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ABSTRACT

Deep Synthetic Noise Generation for RGB-D Data Augmentation

Patrick Douglas Hammond
Department of Computer Science, BYU

Master of Science

Considerable effort has been devoted to finding reliable methods of correcting noisy
RGB-D images captured with unreliable depth-sensing technologies. Supervised neural
networks have been shown to be capable of RGB-D image correction, but require copious
amounts of carefully-corrected ground-truth data to train effectively. Data collection is
laborious and time-intensive, especially for large datasets, and generation of ground-truth
training data tends to be subject to human error. It might be possible to train an effective
method on a relatively smaller dataset using synthetically damaged depth-data as input to
the network, but this requires some understanding of the latent noise distribution of the
respective camera. It is possible to augment datasets to a certain degree using naive noise
generation, such as random dropout or Gaussian noise, but these tend to generalize poorly
to real data. A superior method would imitate real camera noise to damage input depth
images realistically so that the network is able to learn to correct the appropriate depth-noise
distribution.

We propose a novel noise-generating CNN capable of producing realistic noise cus-
tomized to a variety of different depth-noise distributions. In order to demonstrate the effects
of synthetic augmentation, we also contribute a large novel RGB-D dataset captured with
the Intel RealSense D415 and D435 depth cameras. This dataset pairs many examples of
noisy depth images with automatically completed RGB-D images, which we use as proxy for
ground-truth data. We further provide an automated depth-denoising pipeline which may be
used to produce proxy ground-truth data for novel datasets. We train a modified sparse-
to-dense depth-completion network on splits of varying size from our dataset to determine
reasonable baselines for improvement. We determine through these tests that adding more
noisy depth frames to each RGB-D image in the training set has a nearly identical impact on
depth-completion training as gathering more ground-truth data. We leverage these findings
to produce additional synthetic noisy depth images for each RGB-D image in our baseline
training sets using our noise-generating CNN. Through use of our augmentation method,
it is possible to achieve greater than 50% error reduction on supervised depth-completion
training, even for small datasets.

Keywords: RGB-D images, depth completion, synthetic augmentation, deep-generative neural
networks, variational autoencoders, conditional GANs
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Chapter 1

Introduction

Innovations in depth-imaging techniques in the past few years have driven the de-

velopment of consumer-available depth cameras. Depth data, when aligned with RGB

photography, forms RGB-D images, which may be applied to such technologies as self-driving

cars, robotic navigation, facial recognition [20], object classification, and more. Unfortunately,

depth-capture technologies tend to be unreliable, capturing depth maps containing large

holes or significant depth noise. Machine-learning techniques have proven to be adept at

repairing these images but at the cost of requiring large amounts of pre-completed ground-

truth RGB-D images for training [21, 31]. This is problematic, since it is non-trivial to

correct depth data, and most solutions either use other automated hole-filling techniques or

painstakingly hand-correct every image [30]. Both forms of correction are subject to error and

variance, and usually result in sub-par ground-truth targets. As such, most depth-correction

datasets use small amounts of carefully-corrected ground-truth data and rely on synthetic

data augmentation to boost the size of the training set.

Most depth-completion techniques use random dropout as a proxy for depth noise [21].

Such augmentation assumes accurate depth samples and structureless dropout throughout the

image, which is not accurate regarding real data. Real depth noise is not simply random but is

conditioned on the geometry and appearance of the color scene. This causes methods trained

using random dropout to generalize poorly to real RGB-D images. It is possible instead to

train networks to correct real depth noise, but this requires each ground-truth image to be

paired with one or more real noisy RGB-D images, which is difficult with limited data. A

1
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Figure 1.1: Denoised RGB-D image with real and synthetic depth maps. Top: the denoised
RGB-D image. Bottom left: the real noisy depth map. Bottom right: the synthetically-
generated noisy depth image.

2
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Figure 1.2: Different types of depth-camera noise. Depth cameras exhibit noise differently
depending on how they measure distance. In the above examples, each image was captured
with an active-lighting/stereo camera. These types of camera tend to struggle with partial
occlusions, reflective surfaces, dark colors, and textureless regions.

better form of augmentation would imitate the structure of real camera noise to provide

associated cues to the depth-completing network. Depth noise is connected to the type

of camera and technology used, however, so a unique depth-completion and augmentation

solution would be needed for each individual depth-capture technology.

We present an adaptable solution to the augmentation problem that is motivated in

part by recent successes augmenting image-classification datasets using Generative Adversarial

Networks (GANs) [1, 5, 22]. In the same spirit, we train a Variational Autoencoder (VAE)

to synthesize photorealistic depth noise that may be used as data augmentation in training

supervised depth-completion methods. Our model borrows from the Conditional GAN

(cGAN) paradigm to generate realistic depth noise and dropout reliant on the underlying

geometry and appearance of the scene [11, 23]. We use this model to artificially boost the

size of limited depth-completion datasets with realistic camera noise to create additional

training pairs. This helps improve baseline performance using a modified version of the

sparse-to-dense completion network proposed by Ma et al. [21]. Additionally, instead of

3
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Figure 1.3: Damaged RGB-D image from the NYU Depth V2 dataset compared with its
completed ground-truth [30]. There is only one noisy example per clean depth image in this
dataset. Left: the original color image. Center: the raw damaged depth map. Right: the
hand-corrected ground-truth depth map.

Figure 1.4: The Intel RealSense D415 and D435 cameras from left to right respectively [10].

requiring ground-truth depth data to train, we demonstrate that consolidation of multiple

depth images of a static scene can serve as a suitable proxy. Our model may be adapted to a

variety of noise distribution and yields improvements over baseline results even when training

on small datasets.

Our primary contributions are therefore twofold. First, we have gathered a novel

depth dataset consisting of nearly 5.8K still RGB-D images for the Intel RealSense D415 and

D435 depth cameras. The dataset is split between the two cameras, and each still image

corresponds with approximately 200 sequential depth frames modeling the noise distribution

of the respective camera. Although our dataset is large, we demonstrate that only a small

subset is required to train a reasonable noise-generating model. Second, we have developed a

novel VAE capable of reproducing realistic depth noise, as well as a training routine that

may be adapted to a variety of noise distributions. We demonstrate the generalizability

4
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of this network on both halves of the dataset, since both cameras produce unique noise

distributions. We further demonstrate the effectiveness of our VAE as an augmentation

strategy by showing improvements over baseline results on a modified version of the sparse-

to-dense depth-completion network proposed by Ma et al. [21]. By using our method for

data augmentation, it is possible to train a reasonable depth-completion method on small or

otherwise restricted sets of RGB-D training data.

5
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Chapter 2

Related Work

Depth completion attempts to correct damaged RGB-D images by using RGB and

unreliable depth data to make predictions. As depth becomes more unreliable, the solution

must rely on monocular RGB-cues with fewer input depths. Taken to the extreme, where

no depth data is available at all, depth completion becomes monocular depth-prediction,

a related but fundamentally different problem. Monocular prediction works independently

of depth-sensing hardware, requiring only an RGB input, and usually performs worse than

depth-completion solutions due to inferior data. Although we are not specifically concerned

with monocular depth prediction in this thesis, it is closely related to the depth-completion

problem, and a passing understanding of the subject is useful to our own work. We discuss

some of the more crucial papers to the construction of the depth completion and monocular-

prediction problems below, as well as several contemporary methods of using GANs for data

augmentation. None of these approaches directly solve the problem addressed by this thesis,

but all help to motivate the use-case and construction of our own method.

2.1 Sparse and Missing Depth-Completion

Sparse depth-completion involves inferring depths from an RGB-D input where the depth

samples are either randomly or evenly distributed with large gaps of no data inbetween.

Because sparse depth completion is a better-constrained problem than monocular depth-

prediction, many have proposed non-machine-learning algorithmic solutions. Some have used

wavelet methods to produce dense disparity maps from sparse depth samples [9], while others

6
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Figure 2.1: Sample of noisy RGB-D completion results. Figure from [31].

have used wavelet-contourlet dictionaries to directly reconstruct dense depth maps [18]. A

recent supervised-learning approach demonstrated a 50% improvement over state-of-the-art

approaches on the NYU Depth V2 dataset by using a deep CNN with 100 randomly-sampled

depth values per input [21, 30]. It is noteworthy that these methods assume accurate

depth samples and random dropout, which is not representative of real camera noise. Our

noise-generator is designed to replicate realistic depth noise under the assumption that the

magnitude and placement of that noise is informative about the true geometry of the scene.

Dense depth completion attempts to reconstruct true depths based on an input

RGB-D image with real camera noise present in the depth channel. Previously, some have

found success in framing monocular depth-prediction as a discrete-continuous optimization

problem [19]. Zhang et al. take this approach one step further by using a deep CNN to

predict surface normals from input color, and then globally optimizing for depth using input

noisy depths and predicted normals as loose constraints [31]. They leverage point clouds

from the Matterport3D dataset to construct a large training set of corrupted/completed

RGB-D pairs [2]. This approach is the most similar to the particular technique we would

like to augment, however, input depths are only used in the optimization step, meaning that

the network does not learn to handle them directly. Our VAE therefore is unable to directly

7
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Figure 2.2: Sample RGB-to-depth prediction results. Figure from [14].

augment training for this specific method. Instead, we augment a modified version of the

sparse-to-dense depth-completion network proposed by Ma et al. [21]. Our modifications

allow the network to better handle dense input depths, and will be discussed in detail later.

2.2 Monocular Depth-Prediction

Monocular depth-prediction attempts to predict depth based on 2D color data alone. This

problem is ill-posed, because a single RGB image could have infinitely many valid depth

maps. Because most of these depth maps are impossible, however, the problem lends itself

well to machine learning. Early approaches used hand-crafted features and Multi-Layer

Perceptons (MLPs) to make crude depth approximations [28], but these have been supplanted

in recent years by fully-convolutional approaches. Fully-convolutional methods learn their own

features during training, and come in a few flavors. These include multi-tiered approaches,

straightforward deep CNNs, and multiple-task networks, which combine depth-prediction with

related tasks, such as surface-normal estimation and semantic labeling [3, 4, 17]. Recently,

deep-convolutional residual networks have outperformed all other supervised monocular

depth-prediction methods [14]. However, all of these methods are restricted by limited

training data, and tend to produce blurry predictions as a result.

8



www.manaraa.com

Unsupervised methods address the data problem by using large stereo datasets without

ground-truth depth measurements. These methods train on stereo pairs, learning monocular

prediction by using estimated depths to warp an input image to its counterpart, and vice

versa [6]. Since the loss is based on image warping, no ground-truth depth data is needed for

training. Others have found that applying an additional consistency loss or taking a semi-

supervised approach with sparse depth inputs helps improve detail in predicted depths [7, 13].

Such depth inputs could possibly be included in a stereo dataset by using an array of aligned

depth cameras for stereo capture. However, many types of depth sensors interfere with

one another when operated in tandem, and this could invalidate the collected depth data.

Recently, both supervised and unsupervised methods have used multi-view stereo with single

depth cameras to complete damaged RGB-D images to synthetically boost the amount of

ground-truth data available for training [16, 31, 32]. These stereo-completed datasets may

also be used for depth-completion training, with the caveat of containing only one noisy

depth image per ground-truth.

2.3 GAN Data Augmentation

Our data augmentation method is inspired by recent successes using GANs to generate

synthetic training data for small or unbalanced image-classification datasets. These approaches

build on cGANS, which produce outputs conditioned on user-specified inputs and are proficient

in translating images from one domain to another [11, 23]. The Data Augmentation GAN

(DAGAN) uses this idea to produce additional training instances for image-classification

datasets conditioned on a user-specified class [1]. The Balancing GAN (BAGAN) takes this

a step further by specifically producing additional training instances for underrepresented

classes [22]. Recently, Frid-Adar et al. demonstrated the viability of GANs as data augmenters

by significantly improving baseline results on liver lesion detection by generating novel lesion

images using a GAN trained on a limited dataset [5]. Our VAE is an extension of these

9
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approaches, and produces realistic depth noise conditioned on the geometry, appearance, and

other factors of an input clean RGB-D image.

10
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Chapter 3

GAN and VAE Background

Generative machine learning models come in a variety of flavors, including Variational

Autoencoders, Generative Adversarial Networks, reversible generative networks, and others

[8, 12, 29]. The basic idea of a generative network is to synthesize artificial data from a

random input. The synthesized data could be pictures of faces, objects, outdoor scenes, or

even pieces of music. In order to generate coherent data, the network learns a low-dimensional

encoding of the data domain, as well as a decompression algorithm. Ideally, the network

learns a good encoding of the concept that covers the entire vector space, and will translate

any input vector into a coherent output. To use facial generation as an example, this means

that we could sample a completely random input vector (often denoted as z) and use the

generator to convert that vector into a unique, coherent human face. Since we are interested

in generating realistic depth noise, we use our VAE to synthesize noise patterns from random

input vectors. This allows us to generate as much unique noisy training data as we need.

3.1 Generative Adversarial Networks

Generative Adversarial Networks are an unsupervised machine learning variant that simulates

an adversarial game between two agents: the generator and discriminator [8]. The generator

attempts to fabricate realistic-looking data to fool the discriminator, while the discriminator

tries to determine whether or not input data is real. The generator converts a low-dimensional

encoding into a high-dimensional output, and the discriminator produces a binary classification

for a high-dimensional input. The two networks are optimized using an adversarial loss, where

11
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Generator Generated Noise Discriminator

Real

Fake

Classification

Random Z

Input

Figure 3.1: GAN diagram. The generator converts random noise into realistic-looking data,
while the discriminator classifies that data as real or fake. In our case, the generator learns
to produce realistic depth noise, while the discriminator determines if that noise looks real or
not.

the discriminator tries to minimize its classification error between real and fake data, while

the generator tries to maximize the discriminator’s classification error on fake data. The

generator is updated at each training step by backpropagating error through the discriminator,

such that the discriminator actually teaches the generator to produce more realistic outputs.

Ideally, training ends when the output of the generator is indistinguishable from real data.

Conditional GANs (cGANs) attempt to control the type of output the generator

learns to produce, while still maintaining a degree of stochasticity in the outputs [11]. In

standard GAN training, the generator learns to generate coherent data from completely

random inputs. It is not trivial to understand how to manipulate the encoding learned by

the generator, so it is difficult to control the type of data the generator produces. cGANs

solve this problem by adding an additional input to both the generator and discriminator

to restrict the type of output generated. For example, a cGAN tasked with learning to

produce MNIST (handwritten numeric) digits could be conditioned using a one-hot vector

to indicate the number that should be produced [15]. The discriminator learns to reject

mismatched image/label pairs, and teaches the generator to create digits accordingly. Ideally,

the generator still learns to use the random input vector to manipulate the handwritten style

of the output digit. We construct our VAE following this conditional paradigm such that it

is able to produce believable depth noise custom to a input ground-truth RGB-D image.

12
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Learned
Encoding

Encoder DecoderInput Noise Output Noise

Figure 3.2: VAE diagram. Both Autoencoders and Variational Autoencoders learn a com-
pressed representation of input data. in our case, we use our VAE to learn a compressed
representation of depth noise and dropout.

3.2 Variational Autoencoders

Variational Autoencoders are something of a forerunner to the more modern GAN, and

are often worse at synthesizing well-detailed outputs. This is because VAEs stem out of

the idea of traditional Autoencoder networks, which learn aggressive down-sampling and

reconstruction techniques for given data domains [26]. Autoencoders are constructed of

consecutive encoder/decoder networks, which may be fully-connected, convolutional, or both.

The encoder takes a high-dimensional input, potentially an image, and reduces it to an

low-dimensional vector, which the decoder then up-samples to reconstruct the original input.

Autoencoders are considered to be unsupervised networks, since they ideally produce the

same outputs as inputs. Autoencoders are usually used for data compression rather than

data synthesis because they tend to learn poor encodings that are not well-represented over

the entire vector space. This means that feeding the decoder network a random input vector

will likely only produce chaotic noise rather than a coherent output.

VAEs take Autoencoders to the next level by forcing the learned encoding to be similar

to a normal distribution [12]. In this case, the encoder produces two N-dimensional vectors,

representing the mean and standard-deviation of the input data respectively. The decoder

uses an additional reparameterization trick to probabilistically convert these values into a

coherent z-vector, which it then up-samples to produce a recognizable output. The algorithm

for training a VAE is basically the same as for training a regular Autoencoder, since both are
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Reversible EncoderInput Noise

Learned
Encoding

Figure 3.3: Reversible network diagram. RNs learn an invertible encoding for input data. In
this example, the network learns a compression for input depth noise which may be passed
backwards through the network to obtain the original image.

tasked with learning a low-dimensional embedding for the input and reconstructing it on the

other side. Under the VAE paradigm, the learned encoding is well-represented across the

entire normal distribution, meaning that any z-vector sampled from the same distribution

will correspond to a coherent output. This property makes VAEs generative, since we can

pass a completely random vector into the decoder to synthesize novel, believable data.

3.3 Alternative Models

Generative networks is an active area of machine-learning research, and new models are

proposed from month to month. Recently, Reversible Networks (RNs) have begun to gain

traction as a new generative model that may eventually be competitive with current GAN

architectures [29]. RNs are similar in structure to VAEs, except each layer is designed to be

invertible. This means that any input to the network may be recovered from its output, such

that it is only necessary to learn a half of the encoder/decoder structure, since that half may

be flipped to perform the opposite task. RN training therefore focuses on encouraging the

learned encoding to resemble a normal distribution, since any encoded input is guaranteed

to be recoverable. Once training is complete, the network may be used to generate novel

data by passing in random vectors drawn from the appropriate distribution. While RNs may

eventually become competetive with GANs, they currently lag behind both GANs and VAEs
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Figure 3.4: Mode collapse. For each RGB-D input scene, the generator produces outputs
with almost no variation.

in terms of visual performance, producing blurry images lacking high-frequency detail. Due

to this and other issues, we leave an RN solution to depth noise-generation to future work.

3.4 Mode Collapse

A known problem with both cGANs and traditional GANs is mode collapse [8, 11]. Mode

collapse occurs when the generator learns to output a single value rather than a stochastic

sample from the represented data distribution as shown in Fig. 3.4. This often occurs because

it is simply easier for the generator to learn produce the same value every time than to learn

to produce multiple different kinds of image, especially if one image is enough to fool the

discriminator. Alternatively, mode collapse can also occur when the discriminator becomes so

powerful that the generator is unable to fool it, causing learning to halt. Mode collapse occurs

in Conditional GANs when the generator begins to ignore the random z-vector in favor of

learning a one-to-one mapping between the input condition and a believable output. In many

domain-transfer applications, such as satellite photos to maps, this kind of mode collapse is

more acceptable, since a reasonable transfer function has still been learned. However, data

augmentation requires our generated outputs to be highly stochastic, so the generator must

be incentivized to avoid avoid mode collapse.
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There are multiple ways to discourage mode collapse in both traditional and conditional

GANs, but most are dependent on the situation. Isola et al. attempted to enforce stochasticity

in generated outputs by applying random dropout to different layers within their generator

to limited effect [11]. More recently, it has been suggested that forcing generated images

to be reversible by applying an additional reconstruction loss to the generator produces

more stochastic results [33]. Other methods include using a batch-wide loss to discourage

generation of similar images, and periodically re-training the discriminator using a replay

buffer of old generated images, though it is unclear how much the latter strategy helps [24, 27].

Each of these methods increases the complexity of the network architecture and training

algorithm, and it is possible that none of them will entirely solve the problem. Because we

instead use a VAE model rather than a GAN for noise generation, we do not explore these

solutions further in this work.
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Chapter 4

Synthetic Noise Generation for RGB-D Data Augmentation

As previously stated, the goal of this thesis is to present a method for generating

photorealistic depth noise for use in augmenting limited and existing ground-truth RGB-D

datasets. For this to work, we first need a sufficiently large dataset to train our model to

produce noise for a variety of different scenes. To train a noise-generating method, we require

ground-truth RGB-D images paired with many examples of noisy depth images. While some

RGB-D datasets, including NYU Depth V2 and the modified Matterport 3D dataset, already

pair ground-truth RGB-D images with noisy depth images, most of these only have one such

pair per scene [30, 31]. Experiments demonstrate that this is sufficient to learn some noise

augmentation if enough unique scenes are provided, but depth noise varies over multiple

shots of a static scene, so it is best to have multiple examples per image. In order to be

considered a good method of data augmentation, our model must produce photorealistic

stochastic results for each input image, ideally free of synthetic artifacts that will allow the

depth-completion method to cheat and recognize augmented outputs.

We therefore construct our own dataset designed to model the underlying depth-noise

distribution the Intel RealSense D415 and D435 depth cameras. This dataset contains nearly

5.8K proxy ground-truth RGB-D images, obtained by consolidating approximately 200 noisy

depth frames per image. It should be noted that such a large dataset is not necessary to train

a depth generator. Our experiments demonstrate that it is possible to train a reasonable

depth-completion method using our augmentation strategy on a dataset of only a few-hundred

proxy ground-truth images with fewer than ten frames each. This is critical to our method,
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Original Dataset Augmented Dataset

Figure 4.1: Synthetic augmentation example. Our method augments existing or limited
datasets by adding realistic noise to denoised images. In this example, we augment an
instance of our Intel RealSense D415 camera dataset using a noise generator trained on the
same dataset.

since our dataset is not meant to be adapted to depth datasets captured with different

cameras. To augment the NYU Depth V2 dataset, for example, one would need to either train

a depth generator on the existing ground-truth depth data, or capture additional training

data using a Kinect depth sensor. Because our augmentation strategy is effective even when

trained on small datasets, the required data collection may be completed in just a few hours,

while our dataset took the better part of a year to collect.

We use our dataset to train a generative VAE, leveraging the ideas presented by Isola

et al. and Mariani et al. to generate synthetic depth noise conditioned on the latent geometry

and visual appearance of the scene [11, 22]. This model is designed not only to generate

noise in the depth channel, but also to assign dropout to regions where camera readings

often fail. These two kinds of noise are dependent on the structure of the scene, and provide

useful information to the depth-completion method that helps generalization to new data.

We validate our generative model by using it for data augmentation on a modified version

of the sparse-to-dense depth-completion network proposed by Ma et al., and compare to

baseline results [21]. We consider our model a success in that it improves upon baseline

results without the need for adding additional data, and does even better when more training
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(a) D415

(b) D435

Figure 4.2: RealSense D415 and D435 RGB-D images. Note the differences in dropout and
depth noise artifacts between the two cameras.

data is provided to the noise generator. We give details on each step of our process in the

sections below.

4.1 Dataset

We chose to develop using the Intel RealSense D415 and D435 RGB-D cameras because they

are available to the consumer public and are reasonably priced at less than $500 each. Both

are designed to capture at a rate of about 30 frames per second and provide reliable depth

readings up to about 10 meters. The cameras are technically able to provide much deeper

readings but become extremely unreliable past the recommended 10 meters. The cameras

measure depth using a combination of stereo imaging and infrared active-lighting that allows

them to perform reasonably well even in low-lighting, but rather poorly in bright daylight

and outdoor settings. In part because of this limitation, our dataset consists primarily of

indoor images, similar to those presented by the NYU-Depth V2 and modified Matterport

3D datasets [30, 31].
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Frame with Motion Median-Stack ABS Difference

Figure 4.3: Motion removal. We remove frames with motion by taking the absolute difference
of each frame with the median-stack image, and removing any frames that violate a threshold.
ABS Difference colorized here for clarity.

4.1.1 Noise Definition

We begin by defining explicitly what we mean by depth noise. Noise is manifest in the depth

channel in two ways: first by deviations of the depth reading away from the true value, and

second by the complete loss of the depth signal at a given location. Both forms of noise are

inconsistent across frames of a static scene, and fluctuate with some probability dependent

upon the geometry and visual appearance of the scene. Throughout this work, we refer to

the first type of noise simply as depth noise and the latter as dropout. Depth noise is visible

within the depth channel in much the same way as regular noise is visible in an RGB image,

while dropout is indicated by a value of 0 in camera readout. Though the two forms of noise

often behave similarly, depth noise is the most severe at extremely near or far distances,

while dropout tends to be the worst at object boundaries and on darkly-colored surfaces.

The two behave differently enough that we represent them separately in our dataset, using

residual-depth images to represent depth noise and binary masks to indicate points of dropout

on each frame. See Fig. 4.5 for a visual example.

4.1.2 Denoising Pipeline

In order to train a generator to produce noise, we must first have examples of clean depth

images. Rather than require extensive data collection and painstaking hand-corrections of

depth maps, we consolidate multiple noisy depth frames from a static scene to achieve a
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Noisy Depth Stack Median-Stack Despeckled Cross-Bilateral Filled

Figure 4.4: Automated denoising pipeline. After frames with motion are removed, we take
the median-stack of the depth frames, remove speckles with a binary close operation, and
finally apply cross-bilateral filtering to fill in remaining holes.

reasonable ground-truth proxy. This is important, because our method must be adapted

specifically to each kind of depth camera, so it is not feasible to require pristine ground-truth

data for training. Rather, a user may collect a limited number of static depth scenes and allow

the camera to expose for multiple frames on each. By applying our automated depth-denoising

pipeline, the user may convert this data into proxy ground-truth, which may then be used to

train both the depth-noise generator and the depth-completion network. If the user is able

to collect even more data, as we have done with our large dataset, results are even better. It

should be noted, however, that gains due to synthetic noise generation taper off as additional

real data is collected.

Before running our depth-denoising pipeline, we must first remove all frames from our

dataset that contain motion or lighting changes. We have made the assumption that depth

noise is stochastic over each frame of a static scene, and this assumption is broken if the

geometry or other physical characteristics of the scene change during filming. By removing

all motion from our training set, we help to ensure that the noise generator only learns noise

patterns caused by the actual camera hardware, not changes in the environment. Fortunately,

this step is easily automated. To remove frames with motion, we first take the median-stack

over all the RGB frames in a scene. Next, we subtract this median-stack image from each

individual RGB frame, and return the absolute difference between the two, as shown in

Fig. 4.10. We remove any frames from the dataset with an absolute difference above a certain
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threshold, and further remove any scene from the dataset with fewer than 50 valid frames.

This results in some scene having fewer frames than others, though experiments demonstrate

that even just a few frames are acceptable for generating proxy ground-truth.

After removing all frames with motion, we use our depth-denoising pipeline to consol-

idate the remaining depth frames into proxy ground-truth. To begin, we take the median

over the stack of remaining depth frames. This yields a reasonably-well denoised depth

image, often with most dropout regions automatically filled. Depending on the camera used,

however, the resulting median-stack image often contains speckles and other outlier shapes

and erroneous readings produced by variation in the camera. We remove these using an

aggressive binary closing operation with a 15× 15 circular kernel. This step may be adjusted

or ommitted depending on the required dataset, but proved useful for denoising both of our

camera distributions. Third, to fill any remaining holes, we apply the cross-bilateral filtering

function used by the NYU Depth V2 data toolkit. Cross-bilateral filtering does not fill every

hole in each image, but it provides reaonable approximations for regions where data is still

missing. These steps are illustrated by Fig. 4.4.

4.1.3 Noise Representation

Our dataset explicitly represents both types of noise by capturing still RGB-D videos and

taking the median over the stack of frames. This provides a moderately denoised and

hole-filled RGB-D image that we use as pseudo-ground-truth for training the generator. To

represent noise and dropout, we subtract the denoised images from each of the corresponding

frames to obtain residual depth frames. We further separate the two kinds of noise from each

of these frames by saving out individual dropout masks per frame, and filling the dropout

regions in the residuals with a mean value. The frames are saved in tandem with the original

depth readings so that they may be used to learn noise and dropout patterns over time for

each associated denoised image. In the remainder of this work, we will refer to each denoised

image with its collection of depth, residual, and dropout frames as a scene.
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Figure 4.5: Explicit noise representation. We separate out depth noise and dropout by taking
the difference of the raw depth image with the denoised depth image, and marking dropout
regions with binary masks. Top left: the automatically-denoised depth image. Top right:
a raw depth frame. Bottom left: the resulting residual-depth image. Bottom right: the
corresponding dropout mask.
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4.1.4 Dataset Organization

Our dataset consists of approximately 5.8K unique scenes (2.9K for each camera) where each

denoised RGB-D image is paired with a set of 200 noisy depth frames. Since some of our

scenes contain extremely deep depth values, we clip all of the depth and residual frames

to 10 meters for the sake of consistency throughout the dataset, similar to the structure of

NYU-Depth V2 [30]. Additionally, since we remove any frames containing motion, some

scenes contain fewer than the standard 200 frames. In these cases, we completely remove any

scene from the dataset with 50 or fewer valid frames to ensure that each scene has enough

frames for proper denoising. Removing frames with motion from our dataset helps to ensure

that each scene is as still as possible, and therefore only contains variance in the form of

native camera noise. This helps to make the task for our noise generator as explicit and

direct as possible.

We standardize our residual frames by scaling them into the range [0, 1], while dropout

masks are represented using simple binary masks. Because dropout may be confused with

standard depth noise, we are careful to mask out all dropout regions in each residual frame

so that the two factors are not confounded. Because our dataset is large in terms of disk

space, we save our noise and dropout masks as one-channel PNG images. This causes us to

lose some precision to image quantization, but preserves the general shape and appearance

of noise artifacts, which is sufficient for our purposes. It should be noted that all of our

original depth images are saved as raw NumPy files, and preserve the same depth precision

originally captured by the RealSense cameras. This allows us to recalculate depth residuals

and dropout masks on the fly if necessary, as we do in many of our experiments. We also use

these original NumPy files, clipped to 10 meters each, to train our modified version of the

sparse-to-dense depth-completion method [21].

We reserve 500 scenes from each split of the dataset to serve as validation sets for

depth-completion training. These validation scenes were captured in separate environments

from the rest of the dataset to prevent overfit by environment memorization. All validation

24



www.manaraa.com

scenes were captured indoors, with hallways, rooms, and furniture similar to the training

scenes, but all captured in completely different buildings with different architectural styles,

textures, and lighting conditions. To prevent accidental cross-contamination of the training

and validation sets, we refrain from training or validating our noise generator on these scenes.

In our experiments, the noise generator is only trained on provided subsets of the training

scenes, while the depth-completion method is validated on the entire validation set. This

helps provide a consistent error metric across each of our experiments, and ensures that the

depth-completion method is not overfitting to the training data.

4.1.5 Discussion of Dataset Design

It is worth noting that our dataset is already in the format required to train an RGB-D

completion method. Indeed, we do so in our experiments to demonstrate improvements

over baseline capabilities. However, it should be noted that such a method is limited in

performance by our substitute ground-truth images. Our proxy ground-truth RGB-D images

still contain significant amounts of noise and dropout, and are poor substitutes for hand-tuned

ground-truth depth images. Additionally, training a good method would require the bulk

of our dataset, which took the better part of a year to collect. Since each depth-camera

produces a different noise distribution, a method trained on our dataset would not generalize

to data captured by a Kinect or a LiDAR sensor. Since it is impractical to gather datasets of

this scale for each applicable kind of technollogy, we demonstrate that it is possible to achieve

better-than-baseline results on limited-size datasets by using our augmentation method.

Most of our experiments are therefore conducted only on small subsets of our data, and yet

demonstrate impressive improvements over baseline tests.

Another potential concern is the necessity of separating out noise and dropout into

explicit representations in the dataset. Doing so requires more disk space, since both types of

noise are implicitly represented in the raw depth frames already. Our generator produces

residual and dropout frames, which must be separately applied to ground-truth to produce
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Figure 4.6: Encoder Architecture

noisy images, but it is possible to have the generator perform both steps. In our experience,

however, the generator expends most of its learning simply trying to replicate the geometry

contained in the input RGB-D image, and tends to severely blur the output. Rather than

applying noise, the generator tends to produce smoothed depth images with blurry holes.

Separating the types of noise helps disentangle the different tasks, and, in our experience,

leads to visually superior results.

4.2 Model Architecture

Our VAE architecture is a variant of the Deep Convolutional GAN (DCGAN) architecture

proposed by Radford et al. [25]. The DCGAN architecture was originally used for simple

tasks such as generating MNIST digits and CIFAR-10 images and is relatively shallow

when compared with many modern deep neural networks. The formulation consists of two

separate networks, namely the generator and discriminator, which use decoder and encoder

architectures respectively. We concatenate these two networks to form the encoder/decoder

architecture needed for VAE training, as well as deepen the network to handle much larger

images. The encoder architecture is shown in Fig. 4.6 and consists of five 8 × 8 2-strided
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Figure 4.7: Decoder Architecture

convolutional layers with two unstrided 8×8 convolutional output layers that produce the mean

and standard deviation vectors respectively. We follow the pattern of the DCGAN architecture

in using batch-normalization on all intermediate layers, and Leaky-ReLU activation functions

on all but the output layers, which use tanh activations instead. We likewise use strided-

convolutions in place of pooling operations to allow the network to learn its own down-sampling

function, the same as in the DCGAN formulation.

The decoder architecture is shown in Fig. 4.7 and is significantly different from the

standard DCGAN generator design. To support conditional training, the decoder accepts two

inputs: the encoded z-vector, and a denoised 4-channel RGB-D image. The z-vector is simply

up-projected using an 8× 8 unstrided convolution, while the RGB-D input is passed through

a down-sampling network mirroring the first five layers of the encoder architecture. The

results of the two input streams are concatenated together, and then passed through three

8× 8 transpose convolutions with strides of 2 for up-sampling. To improve generated noise

quality, the decoder splits into two output streams that produce depth-noise and dropout

estimates respectively. Both output streams use two 8× 8 transpose-convolution layers with
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strides of 2, the same as in the previous up-sampling layers. Like the strided convolutions

in the encoder, strided transpose-convolutions let the network learn a custom up-sampling

function. All intermediate layers, with the addition of the z-vector up-projection layer, use

batch-normalization. Each layer also uses a Leaky-ReLU activation except for the two output

layers, which both use tanh activations.

4.2.1 Setup for VAE Training

The bottleneck between our encoder and decoder architectures is modified to support VAE

training, which enforces the learned encoding to be similar to a normal distribution. In

support of this pattern, the encoder architecture produces estimated mean and standard

deviation vectors as separate outputs. During the forward pass, the reparameterization

trick uses these two predicted vectors to estimate a concrete z-vector, which is then passed

into the decoder portion of the network. Besides this step, training the VAE is identical

to training a standard Autoencoder. This is because the method used for estimating the

z-vector is differentiable, and does not interfere with backpropagation during training. Since

the decoder architecture produces two separate outputs, we concatenate them into a single

2-channel dropout/residual image during the forward pass, and apply the network training

loss individually to each channel. At runtime, we discard the encoder architecture and simply

pass random z-vectors with conditioned RGB-D images into the generator, since this is all

that is needed for noise generation.

4.2.2 Setup for Conditioning

It’s worth discussing that VAEs are not usually conditional. Typically, a VAE accepts only

one input and learns a compressed encoding that embodies all of the features of the target

domain in a single vector. In our case, this is not practical, because we want every possible

z-vector to be valid on all possible input scenes. For this to work, the z-vector needs to

only encode general information about the placement and magnitude of the noise and depth
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Figure 4.8: U-Net comparison. Compared with standard encoder-decoder architecture.
Graphic from [11].

holes, not any geometric or material cues. Otherwise, most randomly-sampled z-vectors will

not be appropriate for any given scene, since the embedded geometric information would

be completely random. This is why we only add a conditional input stream to the decoder

portion of the network, since we don’t want the encoder inserting scene cues into the learned

embedding. This disentangles the tasks between the two networks, and helps ensure that our

model generalizes to new scenes as intended.

Since the basic DCGAN architecture does not support conditioning, we modify the

structure as shown in Fig. 4.7 to accept denoised RGB-D images in addition to the standard

z-vector as input. This same type of conditional input is used in the traditional cGAN

formulation, though the authors of that method use a U-Net structure rather than the

modified encoder-decoder architecture we use [11]. U-Nets are useful in that they tend to

produce better-detailed outputs thanks to skip-connections between corresponding down and

up-sampling layers, as shown in Fig. 4.8. These skip connections allow high-frequency data to

skip past the network bottleneck, but may also circumvent real learning deep in the network if

the target output is too similar to the network input. It is possible that our architecture could

benefit from skip connections, since it is unlikely to be able to cheat by passing information

through with no modification. However, early experiments demonstrate a sufficient level of

detail in generated outputs that we find skip-connections to be an unnecessary complication

to the network architecture.
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Figure 4.9: Conditional VAE training setup

4.3 Model Training

Because both the D415 and D435 cameras produce different kinds of depth noise, we train

separate generators on each split of our dataset so that the model will not confuse the

respective noise distributions. During training, we batch out data from the chosen training

split in batch sizes of 20, sampling 20 random scenes and pairing each denoised RGB-D image

with a randomly selected dropout/depth-noise pair from the respective scene. The denoised

RGB-D images are used for all conditional inputs into the model, while the concatenated

dropout and depth-noise images are fed directly into the VAE encoder. We optimize the

model with regards to a scaled pixel-wise mean squared error (MSE) loss shown in Eq. 4.1

and cease training after no improvements have been made for 50 epochs. We consider an

epoch to be one complete pass through all of the training scenes and each of their respective

noise and dropout frames.
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(a) Bilinear Downsampling (b) Nearest-Neighbor Downsampling

Figure 4.10: Resizing inputs for noise generation. The color, depth, and residual images
are downsampled using bilinear interpolation. The dropout masks are downsampled using
nearest-neighbor interpolation to preserve binary values.

4.3.1 Data Pre-Processing

Before each batch, we take a pre-processing step that transforms the data into the proper

range and configuration. All of the images in our dataset are saved as 640× 480 PNG files

with pixel values in the range of [0, 255], while our network is designed to operate on images

of size 256×256 with values scaled between -1 and 1. Therefore, at runtime, we not only scale

all image values into the range [-1, 1], but we also resize the input images to be 256× 256

squares using bilinear interpolation for all images except the dropout masks, for which

we use nearest-neighbor interpolation. This has the problem of warping image geometries

and textures, which could potentially interfere with network learning and generalization.

However, the change in aspect ratio is not terribly severe (4:3 to 1:1), and since we are

reducing the dimensions of the input images rather than expanding them, we manage to avoid

introducing severe artifacts. Our experiments demonstrate reasonable ability to generalize

even to unknown scenes, and empirical evidence demonstrates that generated noise appears

photo-realistic despite the warping. This is true even after re-warping the generated noise

image to match the original RGB-D scene.

Additional pre-processing is needed in order to train the network to regress binary

dropout masks. While the depth-noise images may be regressed directly, binary classification

is usually done using a two-layer output channel and a Cross-Entropy loss function. This is
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(a) Binary Labels (b) Soft Labels

Figure 4.11: Softening binary dropout masks. Left: dropout mask before softening. Right:
dropout mask after softening. Label perturbations scaled up for visibility.

because it it easier for a network to assign confidence to a predicted class rather than regress

to an exact binary pixel value. Constructing the network to support both kinds of output is

difficult, however, especially in designing a balanced loss function. To overcome this difficulty,

we use instead use “soft” binary labels for dropout classification. To do so, we randomly

perturb the binary dropout masks by small amounts in the range of [-.1, .1] and clip the

results to the range [-1, 1]. This allows some degree of noise in the network’s predictions, and

helps to prevent layer weights from over-saturating. It further allows us to use the same MSE

loss for both our depth-noise and dropout outputs. The generated masks are then binarized

during the post-processing step by thresholding about 0 to produce binary masks.

For training the VAE, we forgo most forms of standard image augmentation in order

to not accidentally violate the conditions of the noise distribution. The D415 camera, for

example, produces noisy black bars on the left and bottom edges of its captured depth images

due to a restricted depth diagonal field-of-view angle, as shown in Figs. 4.2 and 4.14. Since

these specific artifacts remain in place regardless of the orientation of the camera, we do not

wish to confuse the generator by training it on flipped, rotated, or randomly cropped versions

of the noisy images. Despite this, our dataset has a kind of built-in data augmentation, since
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each scene is associated with between 50 and 200 unique depth frames. This high degree of

variability in the inputs helps prevent the model from overfitting, and allows it to generalize

well to unknown scenes. It is likely that there are other methods of data-augmentation

that would be useful in training better versions of our VAE model, but due to the already

high-quality of our results, we leave this to future work.

4.3.2 VAE Training

We train using a simple unsupervised Autoencoder training algorithm that passes the noise

and dropout data into the encoder end of the network and then reconstructs them on the

other side, as shown in Fig. 4.9. Our method takes an additional denoised RGB-D input

into the conditional stream of the decoder network but otherwise functions the same as a

traditional Autoencoder. We optimize our model using the loss function

Lvae = λ‖r′ − r‖2 + ‖d′ − d‖2 (4.1)

where λ is a scalar weight, r
′
is the generated depth residual, d

′
is the generated dropout mask,

and r and d are the input depth residual and dropout mask respectively. In our experiments,

λ is set to 100. We the weight λ to account for the fact that error in the generated dropout

masks is often several magnitudes larger than error in the generated depth residuals. This

is because the residual-depth images tend to have small values clustered closely about 0

while the dropout masks use larger numbers for binary classification. Scaling the error of

the generated residual images helps the errors of both kinds of generated noise to reduce at

about the same rate.

We train our model on batch sizes of 20 using a learning rate of 2e-4 until convergence.

Similar to a supervised method, we test our model after each training epoch on a held-out

validation set to check its generalization. Unlike training a GAN, there is no risk of mode-

collapse while training our VAE, though we do still need to be careful of overfit. To help
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(a) Real (b) Synthetic

Figure 4.12: Real and synthetic dropout masks. Note that while the placement of the
generated dropout is generally correct, the size and shape of the synthetic artifacts tend to
be larger and rounder than the real dropout artifacts. Despite the differences, generated
noise is similar enough to real noise to be used effectively as data augmentation.

avoid overfitting to the training data, we terminate training early if the network proceeds

for 50 epochs without improving error on the validation set. The required length of training

varies with the size of the dataset, with larger training sets requiring fewer epochs. Because of

this, on large datasets it is possible to terminate after only a few epochs if no improvements

are made, though, for the sake of consistency, we keep that number to 50 throughout our

experiments. We also experimented with reducing the learning rate periodically during

training, but noted no meaningful improvements in network loss and so leave the learning

rate static throughout.

The only notable drawback to using our VAE formulation is that generated noise images

tend to lack high-frequency details and may contain unrealistic blob artifacts in generated

masks. Additionally, a distinct grid pattern is visible in many of the generated residual-depth

images, which prevents outputs from appearing entirely photorealistic. Fortunately, the

grid-like artifacts may be removed in post-processing and do not severely impede the models

ability to act as a data-augmentation strategy. Our cGAN model tended to produce sharper

noise images without the grid artifacts but failed to do so with a satisfactory degree of
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(a) Real (b) Synthetic

Figure 4.13: Real and generated depth residuals. The synthetic residual has been resized,
but has had no other post-processing steps applied. Note the grid-like artifacts contained in
the generated image. These do not appear in every generated residual but may be removed
by using a median-blurring filter.

variability. On the other hand, our VAE model is able to produce exceptionally diverse noise

and dropout images appropriately conditioned on RGB-D inputs. This advantage, along with

the simplicity of VAE training, makes our VAE formulation preferable to a cGAN model for

our purposes. Even despite the the generated artifacts, the VAE model is able to produce

sufficiently-realistic depth noise with enough variabilty to improve baseline results on the

modified sparse-to-dense method.

Fine-Tuning with cGAN Training

Since the biggest limitation of our VAE is loss of high-frequency detail, and because the two

architectures are so similar, we explored the option of fine-tuning our model using cGAN

training after VAE training has converged. Indeed, this approach is used by other GAN

data-augmentation strategies to reportedly good effect [22]. The idea is to use VAE training

to force the network to learn a good embedding for the target data distribution, and then

shift over to GAN training to learn to produce fine details and other elements that might

be missed training with a per-pixel loss. At the time of GAN training, the encoder/decoder
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Figure 4.14: Fine-tuning with cGAN training. The pre-trained decoder and encoder structures
are separated and used as the generator and discriminator models respectively. cGAN training
requires both models to be conditional, which is problematic for our setup, since only the
decoder takes a conditional input.

halves of the VAE model are simply separated and used respectively as the discriminator and

generator for GAN training. This is especially useful for avoiding mode collapse, since in this

instance, the generator has already learned a good embedding for the chosen image space,

and will need only minor tweaks to improve the generated images further. Since variety is

built in, the network naturally avoids learning to repeat the same generated outputs.

While this approach has worked for other augmentation strategies, we found that

attempting to fine-tune our VAE with cGAN training tended to undo all the learning the

network had previously done. This is due in part to the fact that our VAE formulation is

not exactly the same as the cGAN formulation, not only because the outputs of the encoder

network are different, but also because the encoder network is not conditional in our VAE

formulation. As such, an entirely new network must be trained to act as the discriminator

model which has not had the benefit of VAE training. This new discriminator model tends

to cause the generator to obliterate its previously learned weights, even if it is given a

substantial pre-training period before moving to real GAN training. The end result is that

cGAN fine-tuning usually turns into cGAN training from the ground-up, with no time saved
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and exactly the same problems as regular cGAN training. Finally, because our generated

VAE results were of such high quality, we determined that it was not necessary to explore

this route further.

4.3.3 Post-Processing

Noise images produced by our model are 256 × 256 square, while most depth-completion

methods expect the dimensions of the input image to be approximately 240 × 320. As

before, when we scaled down our input images for training the generative model, we use

bilinear interpolation to resize the output images appropriately. This causes some blurring

and distortion artifacts in our predicted masks, but since we are using these noise images as

augmentation for existing proxy ground-truth, the overall effect of these artifacts is small.

It is possible to adjust our model to produce images of the correct scale and aspect ratio,

but doing so requires a significant overhaul of the network architecture. Restructuring our

network in this way led to memory issues related to the introduction of additional layers,

and required us to train with significantly-smaller batch sizes. Because of the already good

performance of our smaller architecture, we leave exploration of deeper models to future

work.

As previously described, generated residual-depth images tend to contain grid-like

artifacts that reduce the plausibility of the fabricated noise. These artifacts must be removed

before using our generated noise images for augmentation, because they are regular enough

that the augmented method could potentially use them for image memorization. We eliminate

the worst of these artifacts using a spatial median blur, which preserves the major shapes and

characteristics of the generated depth residuals while suppressing high-frequency artifacts.

For our purposes, we use a median filter with a 7× 7 kernel, which is sufficient to remove the

most noticeable of the grid-like artifacts. The median filter is computationally efficient, so

this additional post-processing step does not significantly slow down noise generation. The

post-processing pipeline for generated residuals is shown in Fig. 4.15.
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Generated Depth Residual Median-Blurred Resized

Figure 4.15: Post-processing pipeline for generated depth residuals. We apply median-filtering
before resizing for efficiency, but this step may be conducted in any order.

Figure 4.16: Post-processing pipeline for generated dropout. Note that we resize before
binarization to avoid creating pixelated dropout boundaries.
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Post-Processed Depth Residual Post-Processed Dropout MaskProxy Ground-Truth Depth Map Generated Depth Map

Figure 4.17: Pipeline for generating synthetic noisy depth images. ◦ indicates point-wise
multiplication.

Because our network generates smooth dropout predictions rather than discretized

binary masks, we are able to reshape these predictions using bilinear interpolation the same

as the generated depth residuals. After reshaping, the dropout predictions are converted

into binary masks by thresholding about 0. Reshaping and thresholding in this way tends to

produce slightly-warped dropout regions with ragged edges, but performs considerably better

than performing these operations in reverse order. Thresholding first and then resizing using

nearest-neighbor interpolation produces pixelated dropout regions that are far less believable

and much more likely to cause problems during depth-completion training. Once the dropout

masks are reshaped to match the original RGB-D scene, we clip all values to the range [0,

1], where 0 indicates depth dropout. The post-processing pipeline for predicted dropout is

shown in Fig. 4.17.

The entire pipeline for generating a novel noisy image is therefore as follows. First,

we use a pre-processed ground-truth RGB-D image and a random z-vector drawn from a

normal distribution to generate a depth-residual/predicted-dropout pair. Second, we reduce

grid-like artifacts in the generated depth-residual image using a spatial median filter, and

then resize using bilinear interpolation. Third, we resize the smooth dropout image using

bilinear interpolation, and then binarize it by thresholding about 0. Fourth, we ensure both

post-processed images are in the correct ranges, scaling the residual-depth values into the

range [-1, 1] and the dropout mask values into the range [0, 1]. Afterwards, we add the

generated residual-depths to the original proxy ground-truth depths to apply depth noise,

and apply dropout by point-wise multiplying the result with the binarized dropout mask.
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4.4 Using our Method for Data Augmentation

Our method may be used for either online or offline data augmentation. Online data

augmentation means that training instances are augmented on-the-fly while the depth-

completion method is training. Because of this, online augmentation requires access to the

codebase for the method-of-choice, and should be avoided if such access is unavailable. In our

case, the source code for the sparse-to-dense depth-completion method already contained a

framework for adding additional data-augmentation strategies, so the required modifications

to support our own method were minimal. Offline augmentation, on the other hand, involves

pre-generating additional training pairs to be included with the core dataset. Because of

this, offline augmentation adds no time to network training other than the initial cost of

pre-generating the augmented data. This data may be re-used between training sessions, and

is useful for performing consistent experiments, since the augmented data is identical for each

run. We use both modes of augmentation in our experiments to explore the strengths and

weaknesses of each.
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Chapter 5

Experiments

5.1 Baseline Method

For our baseline experiments, we augment the Sparse-to-Dense depth-completion network

proposed by Ma et al., which we call SparseNet for short [21]. SparseNet is the most similar

to the type of depth-completion solution we would like to augment apart from the network

proposed by Zhang et al., which we will discuss in detail below [31]. SparseNet assumes

input RGB-D images with sparse (a few hundred) spatially-random depth samples, and is

specifically designed to work with point clouds generated using SLAM methods. It uses

an encoder/decoder architecture with a tight bottleneck to project the sparse input depth

samples onto dense depth predictions. Because of the aggressive bottleneck, SparseNet

produces blurry predictions and is not well-suited to correcting dense noisy RGB-D images.

In order to use SparseNet for our experiments, we modify the architecture slightly as shown

in Fig. 5.1 to support dense inputs and higher-fidelity outputs.

In the Sparse-to-Dense paper, the authors propose two architectures to operate

separately on the NYU-Depth-V2 and KITTI-Cityscapes datasets. This is because the images

in the KITTI dataset are so much larger than those in the NYU-Depth-V2 dataset that using

the same architecture for both exceeded memory capabilities of the authors’ hardware. We

use the NYU-Depth-V2 variant of the SparseNet architecture because our RGB-D images are

the same size and shape as those contained in the NYU-Depth-V2 dataset. This architecture

uses the first four layers of the pre-trained ResNet-50 network for down-sampling, followed

by a four-layer decoder that up-projects the image to about half the input size. Afterwards,
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Figure 5.1: Modified SparseNet architecture. We add the layer marked in yellow, as well
as the skip-connections between the ResNet-50 layers and the up-sampling layers. We also
increase the kernel size of the up-sampling layers from 2 × 2 to 5 × 5 to reduce pixelated
artifacts in output depth maps.

it uses a 3× 3 convolution followed by a bilinear up-sampling layer to project the image to

the original shape. The authors found that using the UpProj modules proposed by Laina et

al. [14] worked best for the decoder, but we use transpose-convolution layers for simplicity

and consistency with our noise-generating architecture.

To overcome the tight bottleneck, we add skip-connections between the four ResNet

down-sampling layers and the original four up-sampling layers. This allows high-frequency

details to skip the down-sampling layers without enlarging the bottleneck, which is useful

for hole-filling and denoising operations. We zero-pad each of the ResNet feature maps to

match the somewhat larger up-sampling feature maps before concatenating the two at each

skip-connection. The size-mismatch between concatenated layers results in a border-like

artifact that usually disappears by the time training concludes. Besides the skip-connections,

we add an additional 2-strided 5× 5 transpose-convolution layer to the decoder to improve

image fidelity. This reduces blurring as a result of up-sampling with the bilinear layer, which

is now used to down-sample the image to the correct shape. We likewise increase the kernel
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sizes of each of the original decoder layers from 2× 2 to 5× 5 to reduce pixelated artifacts in

output depths.

5.1.1 Discussion of Alternate Baseline

It should be noted that the Deep Depth Completion method proposed by Zhang et al. is

both state-of-the-art and better fits the assumptions of our depth-augmentation strategy [31].

However, as previously discussed, this method is not end-to-end, and uses a deep network

only to predict surface normals from color data, not complete damaged depths. The authors

observe that including depth information in the surface-normal predictions actually hurts

network performance, likely because the network learns to rely too heavily on input depth

information and is unable to learn to predict surface normals for regions where depth is

missing. Beyond surface-normal prediction, the actual depth-completion step is posed as a

global optimization problem, which has a known algorithmic solution and does not benefit

from additional training data. These factors make it seem unlikely that our method could

effectively augment this particular approach, so we leave further investigation to future work.

5.2 Baseline Experiments

We perform separate baseline experiments on both the D415 and D435 splits of our custom

dataset. The purpose of these experiments is to compare the effect of adding more data

in the form of RGB-D scenes versus additional depth frames, as well as to test how well

SparseNet is able to perform using our proxy ground-truth depth images. These experiments

further demonstrate how much data is needed to train an effective depth-correction algorithm,

and the rate at which adding additional real data decreases validation error. They provide

the foundation for our augmentation experiments, since we expect augmented datasets to

perform better in every case. For each of these experiments, we train the modified SparseNet

model for 100 epochs on a randomly-selected subset of the chosen training split, optimizing
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(a) 1 Depth Frame (b) 16 Depth Frames (c) 200 Depth Frames

Figure 5.2: Recalculated proxy ground-truth depth images. We recalculate proxy ground-
truth depths for each training subset to ensure that each model only trains on the available
data without receiving cues from the larger dataset. On subsets with only one depth frame
per scene, we skip the median-stack filtering step and simply apply cross-bilateral filtering to
produce proxy ground-truth depths.

with respect to the pixel-wise mean squared error and reporting the average validation error

between two identical runs of the experiment.

To prevent accidental inclusion of extra information, we recompute our proxy ground-

truth RGB-D images for each randomly-selected training subset as shown in Fig. 5.2. We do

this to ensure that each depth-correction model is trained with respect to only the available

training data, not the entire dataset at large. We use our previously-described depth-denoising

pipeline in each case, with a slight modification for datasets where we only sample one depth

frame per scene. We typically apply a median-stack filter to multiple depth frames to denoise

our proxy ground-truth RGB-D images, but this is not possible in the case of scenes with

only one frame. In these cases, we do not apply any special kind of denoising but merely use

cross-bilateral filtering to fill in the majority of the holes. This produces noticeably sub-par

proxy ground-truth data, but the reduction in quality is to be expected with only a single

frame per scene.

We do not recompute proxy ground-truth images for our validation sets, but build

these images using all available depth frames. We further validate each depth-completion

model against the entire validation set of the corresponding split, using only one frame

per scene for sake of efficiency. This provides consistency between experiments and allows
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Training Iterations
10000 20000 40000 80000 160000

More Depth Frames 1.230 1.210 1.133 0.829 0.706
More Unique Scenes 1.230 1.264 1.029 0.813 0.670
More Epochs 1.230 1.244 1.231 1.235 1.236

D415 Baseline Experiments

Training Iterations
10000 20000 40000 80000 160000

More Depth Frames 1.104 1.060 0.924 0.510 0.447
More Unique Scenes 1.104 1.059 0.804 0.533 0.456
More Epochs 1.104 1.090 1.092 1.100 1.082

D435 Baseline Experiments

Table 5.1: Baseline validation mean squared error on the D415 and D435 datasets. Best
validation errors are shown in bold. Each model is trained for 100 epochs except where
indicated otherwise, and each is directly comparable to similar models trained for the same
total number of training iterations. The total number of training iterations for each experiment
is considered to be the number of unique training pairs multiplied by the number of training
epochs.

us to judge how well each model learns to generalize and denoise RGB-D data. It further

provides us with an objective measure to compare how well depth-completion models perform

when trained on different kinds of data. This includes different sizes of datasets, different

ratios of depth frames to unique scenes, and different qualities of proxy ground-truth data.

Interestingly, our experiments demonstrate that even depth-completion models trained on

sub-optimal proxy ground-truth data tend to generalize well to the respective validation set

if given enough training data.

For our initial experiments, we compare the isolated effects of increasing the number

of training scenes versus the number of depth frames per scene. We begin by training a

model on a randomly-selected subset of 100 scenes with one depth frame per scene. Next, we

double the number scenes for each experiment, training models on 200, 400, 800, and 1600

scenes, each with only one depth frame per scene. We mirror this by training models on the

original 100 scenes with 2, 4, 8, and 16 depth frames per scene. Note that we balance the
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number of scenes and depth frames in each training subset so that each model is directly

comparable to a model trained predominantly on the opposite kind of data. To control for

the effect of simply training the models for longer, we train models on the original subset of

100 scenes with one depth frame per scene for 200, 400, 800, and 1600 epochs. We report

the average pixel-wise mean squared error of these experiments for both the D415 and D435

splits in Table. 5.1 and compare the validation curves for each split in Fig. 5.3.

As expected, the error curve for increasing the number of epochs is nearly flat, since

simply exposing the network to the same data more often tends to cause overfit. More

interestingly, the error curves for the number of scenes and the number of depth frames are

quite similar, indicating that the two improve the model at almost the same rate. Adding

more frames seems to be better under most circumstances, though the error rates for each

are similar enough that this may be within standard error. This indicates that both forms of

data have a similar impact on model generalization, and supports our claim that additional

synthetic noisy depth frames will improve depth-completion methods over baseline results.

Further, the impact of additional data seems to be largest when training subsets are small,

indicating that data augmentation will likely be the most useful for small datasets. This is

as expected, since our goal is to enable the development of good depth-completion methods

without the need for extensive ground-truth data collection.

Following this, we examine the combined effect of increasing both the number of

scenes and depth-frames per scene, the results of which are shown in Table 5.2. As expected,

error reduces monotonically as one increases the number of scenes going from left to right

across each row. This follows the previously-observed behavior of our initial experiments,

and matches the pattern one would expect to see by adding additional unique ground-truth

RGB-D images to a training set. More significantly, increasing the number of depth frames

per scene similarly reduces the resulting error as shown by the monotonically decreasing error

as one goes down each column. These results demonstrate that the link between adding more

unique scenes and more depth frames per scene holds for many different sizes of datasets. In
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Figure 5.3: Baseline validation curves showing the effect of more scenes vs. more samples on
the D415 and D435 datasets. More scenes (more ground-truth) seems to be generally more
effective, but more depth frames per scene seems to have a similar effect on training. This
suggests that augmentation by adding synthetically-damaged depth frames should improve
over these results.
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Frames
Per Scene

Total Scenes

100 200 400 800 1600
1 1.230 1.264 1.029 0.813 0.670
2 1.210 0.992 0.800 0.666 0.589
4 1.133 0.888 0.686 0.606 0.553
8 0.829 0.696 0.601 0.542 0.495
16 0.706 0.610 0.560 0.502 0.459

D415 Baseline Experiments

Frames
Per Scene

Total Scenes

100 200 400 800 1600
1 1.104 1.059 0.804 0.533 0.456
2 1.060 0.754 0.488 0.432 0.375
4 0.924 0.582 0.445 0.381 0.322
8 0.510 0.461 0.389 0.334 0.289
16 0.447 0.405 0.323 0.293 0.254

D435 Baseline Experiments

Table 5.2: Results of baseline experiments. Pixel-wise mean squared error is shown for
each experiment. Note that error reduces monotonically as the number of scenes increases
across each row, and also reduces monotonically as the number of frames increase down each
column. We bold the center antidiagonal down each matrix (from upper right to lower left)
demonstrating the similar validation errors between experiments with the same total number
of training instances.
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every case, adding more depth frames to each scene reduces pixel-wise error at about the

same rate as introducing additional unique scenes. Put differently, adding more frames to

each scene is about equivalent to adding more ground-truth data to the training set.

It further appears that the ratio of frames per scene to the number of unique scenes

in the training set does not effect pixel-wise loss. The errors along the antidiagonals of each

matrix of Table 5.2 use the same number of training pairs and produce validation errors

within a tight error margin of one another, with few exceptions. This seems to indicate

that it does not matter whether one adds more unique ground-truth images or more noisy

depth frames to the training set, since both have a nearly identical impact on training.

This bears implications for the development of future RGB-D datasets, since it is generally

easier to collect multiple frames for a few scenes than many scenes which must be carefully

hand-corrected. Assuming that other depth-completion models behave similarly to SparseNet,

it might be possible to gather larger ground-truth datasets with less effort by following our

own pattern of collecting multiple frames per scene.

Because we measure validation error quantitatively using pixel-wise mean squared

error, it is possible that training on more depth frames leads to qualitatively different kinds

of artifacts in corrected RGB-D images than training on more diverse scenes. Examples could

include increased blurring on object boundaries and poor generalization to novel geometries

when trained on fewer unique scenes than depth frames. Fig. 5.8 demonstrates that these

artifacts are not readily apparent in corrected RGB-D images, so further inspection is required

to discern any qualitative differences. A potential solution to determining qualitative error in

reconstructed depth maps would be to use a pre-trained convolutional network to form a

perceptual loss between output and target depth images. Since we use SparseNet for our

depth-completion model, however, we follow the pattern set by Ma et al. and focus our efforts

on improving quantitative baseline error [21]. Further study using a qualitative loss is beyond

the scope of this thesis and is left to future work.
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Input RGB-D Image 200-Frame Proxy Ground-Truth

Output from 1600 Scenes 
with 1 Frame per Scene

Output from 100 Scenes 
with 16 Frames per Scene

Output from 100 Scenes 
with 1 Frame per Scene

Figure 5.4: Baseline completed RGB-D images. Top row: Input RGB-D image and target
output. Bottom row: SparseNet outputs trained on three different training sets.

5.3 Augmentation Experiments

To test our augmentation method, we repeat our baseline experiments using synthetically

doubled training sets. We use offline augmentation for each experiment to control the amount

of synthetic data each training subset receives. We train a new noise-generating VAE for

each experiment using only the randomly selected training subset, holding out a random

20% for validation. We avoid validation on the actual held-out validation sets to prevent

cross-contamination of the training and validation sets through data augmentation. Further,

we use the same proxy ground-truth RGB-D images calculated for each training subset to

train our noise generator as well as our depth completer. This ensures that both models train

on exactly the same data, and that the noise generator does not have any outside information

the depth corrector lacks. To further control for the effect of longer training due to larger

datasets, we halve the number of training epochs for each experiment from 100 to 50. As

before, we run each experiment twice and report the average error between the two runs.
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Training Iterations
10000 20000 40000 80000 160000

More Depth Frames 1.230 1.210 1.133 0.829 0.706
More Depth Frames + Aug 1.217 1.109 0.811 0.685 0.593
More Unique Scenes 1.230 1.264 1.029 0.813 0.670
More Unique Scenes + Aug 1.217 1.084 0.785 0.667 0.573

D415 Augmentation Experiments

Training Iterations
10000 20000 40000 80000 160000

More Depth Frames 1.104 1.060 0.924 0.510 0.447
More Depth Frames + Aug 1.085 0.792 0.696 0.452 0.370
More Unique Scenes 1.104 1.059 0.804 0.533 0.456
More Unique Scenes + Aug 1.085 0.959 0.703 0.461 0.361

D435 Augmentation Experiments

Table 5.3: Augmented validation mean squared error for initial experiments compared to
baseline experiments. We mirror our initial baseline experiments using synthetically doubled
training subsets and half as many training epochs. As before, best validation errors are
marked in bold.
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Figure 5.5: Augmented versus baseline validation curves. Note that augmentation appears to
improve error in nearly every case, but helps the most on medium-sized datasets. Synthetically
doubling the amount of training data on the smallest datasets does not visibly improve error,
while doing the same on the largest datsets only reduces error slightly below the baseline.
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We first mimic the experiments described by Fig. 5.3 in the previous section. We test

a single augmented baseline using 100 scenes with one frame per scene, and then check the

effect of additional scenes and frames as previously described. The results of this experiment

are reported in Table 5.3. As demonstrated by both Table 5.3 and the validation curves

given by Fig. 5.6, the augmented experiments outperform the baselines in every instance

except on the set of 100 scenes with one frame per scene. In this case, it is noteworthy

that the augmented method does not perform worse than the baseline, just not noticeably

better, meaning that augmentation did not hurt training even on such a small dataset. In

later experiments, we find that we are able to improve baseline results even on the smallest

baseline training sets by simply generating much larger amounts of synthetic data. This

suggests that, as expected, synthetic data is somewhat less useful for network training than

real data, though the contribution is still significant.

The validation curves in Fig. 5.6 demonstrate that the effect of synthetically doubling

training data tends to be more exaggerated on smaller datasets, with the exception of the

smallest training subset. As real data increases, however, improvements due to additional

synthetic data tend to taper off. To test how this applies to different sizes of training sets with

different ratios of scenes to depth frames, we perform augmented versions of the experiments

described by Table 5.2. In each experiment, we synthetically double the number of depth

frames per scene in each training subset and reduce the number of training epochs from 100

to 50 as described previously. We report our results in Table 5.4. As previously observed,

the percent improvement for augmented experiments reduces as the total number of training

pairs increases, as shown by Table 5.5. Even so, our experiments demonstrate an average

improvement of approximately 13.5% on the D415 dataset, and approximately 16.2% on the

D435 dataset. It is possible that better results could be obtained within limits by adding

even more synthetic data to the augmented training sets.

Observing Table 5.5 we note that our augmentation method yields limited improve-

ments on both extremely small and extremely large datasets. It seems that the sweet spot
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Frames
Per Scene

Total Scenes

100 200 400 800 1600
1 1.217 1.084 0.785 0.667 0.573
2 1.109 0.820 0.679 0.553 0.515
4 0.811 0.732 0.596 0.542 0.490
8 0.685 0.590 0.542 0.493 0.458
16 0.593 0.538 0.485 0.462 0.429

D415 Augmented Experiments

Frames
Per Scene

Total Scenes

100 200 400 800 1600
1 1.085 0.959 0.703 0.461 0.361
2 0.792 0.559 0.426 0.383 0.320
4 0.696 0.442 0.397 0.317 0.269
8 0.452 0.377 0.314 0.281 0.243
16 0.370 0.324 0.273 0.243 0.223

D435 Augmented Experiments

Table 5.4: Results of data augmentation experiments. We report average mean-squared
error between two runs of each experiment. We synthetically double the number of frames
per scene for each training subset, and halve the number of training epochs such that each
experiment is comparable to the baselines shown by Table 5.2. In every case, the augmented
methods produce lower error than their baseline counterparts as shown by Table 5.5. As
before, we bold the center antidiagonal of each matrix to demonstrate similar errors between
experiments with the same total number of training instances.
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Frames
Per Scene

Total Scenes

100 200 400 800 1600
1 1.10 14.24 23.71 17.91 14.49
2 8.35 17.30 15.13 16.98 12.56
4 28.39 17.57 13.12 10.49 11.39
8 17.38 15.23 9.82 9.13 7.47
16 15.95 11.81 13.39 7.88 6.64

D415 Augmentation Improvements

Frames
Per Scene

Total Scenes

100 200 400 800 1600
1 1.72 9.44 12.62 13.43 20.83
2 25.28 25.93 12.81 11.46 14.80
4 24.63 23.99 10.79 16.69 16.49
8 11.47 18.22 19.41 15.74 16.09
16 17.25 20.12 15.35 17.24 12.23

D435 Augmentation Improvements

Table 5.5: Percent improvement on augmented training sets. Note that improvements are
generally the greatest on medium-sized datasets with between 200 and 1600 total training
pairs, though this range seems slightly wider on the D435 dataset. We bold the percent
improvement for all experiments with between 200 and 1600 training pairs in both matrixes
for easy readability.
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(a) D415

(b) D435

Figure 5.6: 3D visualization of augmented error reduction. As demonstrated by Table 5.5, our
augmentation method is the most effective on medium-sized datasets. In both the surfaces
shown above, percent improvement is the lowest on the largest and smallest datasets, but
reaches its peak on around 400 total training pairs. Blue regions indicate the smallest error
reductions, while gray areas indicate the largest.
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for improvement is somewhere between 200 and 1600 training pairs, with results tapering off

before and after that. This is likely because our augmenter is unable to learn to produce

realistic synthetic data from small datasets, and the effects of augmentation diminish as

expected when more real data is available. Medium-sized datasets contain sufficient real data

for the augmenter to learn to produce realistic outputs while still being small enough that

augmentation contributes to training. Nonetheless, Table 5.5 demonstrates that augmenta-

tion improves depth-completion error over baseline results in every instance. This means

that our VAE is able to learn useful characteristics of the latent noise distribution even on

extremely small training sets. In the next section, we demonstrate the ability of our method

to make large improvements even on small datasets by generating disproportionate amounts

of synthetic data.

5.3.1 Effects of More Synthetic Data

We check the limits of our augmentation method by synthetically expanding randomly selected

100-scene training subsets from each camera split with only one scene per frame. We train a

unique generator on each subset, holding out a random 20% of the data for validation, and

use these pre-trained models to augment every experiment for the respective camera split.

For control, we first train the depth-completion models on the real training subsets and then

train the same models from scratch on augmented datasets with 2, 4, 8, 16, and 32 times

the original number of frames. In each experiment, only the original 100 single-frame scenes

are real, while the rest of the frames for each scene are synthetically generated. We check

the effect of synthetic data versus additional real data by conducting the same experiments

using 2, 4, 8, 16, and 32 times the original number of real frames with no augmented data.

As additional control, we adjust the number of training epochs for each experiment so that

each model trains for the same number of iterations.

We run each experiment twice and present the average mean squared error of our

results in Table 5.6. Interestingly, while doubling the number of frames in such a small
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Training
Epochs

Frames
Per Scene

Real
Frames

Synthetic
Frames

1600 1 1.249 1.249
800 2 1.248 1.227
400 4 1.147 1.103
200 8 0.901 0.774
100 16 0.690 0.740
50 32 0.595 0.623

Increased Synthetic Data on D415 Dataset

Training
Epochs

Frames
Per Scene

Real
Frames

Synthetic
Frames

1600 1 1.118 1.118
800 2 0.988 1.081
400 4 0.845 1.022
200 8 0.503 0.538
100 16 0.439 0.480
50 32 0.395 0.434

Increased Synthetic Data on D435 Dataset

Table 5.6: More synthetic frames compared with more real frames. Each training set consists of
the same 100 randomly-selected scenes, and we report mean squared error on the appropriate
validation set averaged between two runs of each experiment. Note that we balance the
number of epochs for each experiment so that each model trains for the same amount of time.
Best errors are marked in bold, and skew towards training on more real data. While real
data performs better than synthetic data in most cases, both errors reduce at a similar rate.
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(a) D415
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(b) D435

Figure 5.7: Synthetic versus real validation curves. Each training set consists of the same 100
randomly-selected scenes, and we report mean squared error on the appropriate validation
set averaged between two runs of each experiment. We use the same generator for each
experiment, and train it only on the initial 100 scenes using one frame per scene. Note
that increasing the number of synthetic frames per scene has a similar effect on training to
increasing the number of real frames per scene.
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Output from 100 Scenes with 
32 Real Frames per Scene

Output from 100 Scenes with 
1 Real Frame and 31 

Synthetic Frames per Scene

Output from 100 Scenes 
with 1 Frame per Scene

Input RGB-D Image 200-Frame Proxy Ground-Truth

Figure 5.8: Completed RGB-D results using more synthetic training data. Top row: Input
RGB-D image and target output. Bottom row: SparseNet outputs trained on three different
training sets, including a dataset consisting of disproportionately-synthetic data.

training set is ineffective, we are able to achieve nontrivial improvements by adding much

more synthetic data. By synthetically boosting the size of a 100-scene training set from one

frame per scene to 32 frames per scene, we are able to achieve an average 50.1% improvement

in pixel-wise mean squared error on the D415 validation set, and a 61.2% improvement on the

D435 validation set. This is just slightly behind the average 52.4% and 64.7% improvements

we see on the D415 and D435 datasets respectively using 32 real frames per scene. By using

our augmentation method, we are able to train a depth-completion method on a limited

amount of real data to be competitive with a real dataset 32 times larger, and possibly even

better with more synthetic data. Fig. 5.7 illustrates how closely adding synthetic frames

mirrors adding more real frames on pixel-wise error. The rate of improvement for both

real and synthetic data tapers off at a similar rate, with methods trained on synthetic data

tending to lag slightly behind those trained on real data as would be expected.
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As we have demonstrated, it is possible to use our augmentation method to significantly

reduce the amount of data required to train a reasonable supervised depth-completion model.

It is further possible to do so using sub-optimal proxy ground-truth data obtained using only

one or more sampled depth frames per scene. This is important because a depth-completion

model trained on our Intel RealSense D415 or D435 datasets would likely generalize poorly

to RGB-D images captured using different depth-sensing technologies. Users may customize

our noise-generator to their specific camera noise distribution by collecting their own data or

by using an existing dataset. Since our noise-generator is able to augment depth-completion

models trained on small datasets to be competitive with those trained on much larger

datasets, users’ custom datasets may be as large or as small as necessary. As previously

discussed, Table 5.5 demonstrates that the sweet spot for our augmentation method resides in

medium-sized datasets and improvements diminish with extremely small or large amounts of

training data. Despite this, we can still achieve meaningful improvements on small datasets

by generating disproportionate amounts of synthetic data.

5.3.2 Efficiency Compared to Real Data

A valid concern is whether running the depth-denoising pipeline and training our noise-

generating model offsets the cost of gathering more real training data. In our experience, we

were generally able to capture a 200-frame scene in about one minute. Capturing multiple

frames per scene generally takes far less time than capturing more diverse scenes, and also

yields better proxy ground-truth RGB-D images. Following our pattern for depth-completion

training, proxy ground-truth RGB-D images are required whether one wishes to augment

using synthetic data or not. Our depth-denoising pipeline only needs to be run once to

pre-generate proxy ground-truths, and may be set to run during off-hours with limited human

supervision. Depending on the size of the dataset, running the pipeline and training the

noise-generator may take anywhere from a few minutes to several hours. Once trained, the
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generator is able to produce as much synthetic data as needed, making synthetic augmentation

generally more efficient than gathering more real data.
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Chapter 6

Conclusion

In the introduction to this work, we state that our aim is to demonstrate that it is

possible to achieve better-than-baseline error on supervised depth-completion methods by

using synthetic depth-map augmentation. In support of this claim, we have gathered large

RGB-D datasets for the Intel RealSense D415 and D435 cameras. These datasets are designed

to support both depth-completion training as well as noise-generation training by pairing

multiple examples of noisy depth maps with automatically denoised and hole-filled RGB-D

images. We demonstrate that these automatically completed RGB-D images may be used as

reasonable proxies for hand-tuned ground-truth data in our baseline experiments by showing

reasonable generalization to held-out datasets. We benchmark baseline depth-completion

results on our datasets using a modified version of the Sparse-to-Dense depth-completion

network proposed by Ma et al. [21] on different-sized subsets of our training data. Through

our baseline tests, we demonstrate that adding additional noisy depth frames per scene has a

similar effect on training as adding more unique scenes. This supports our claim that adding

synthetic noisy depth frames to the training set will reduce error below baseline results.

We test whether this theory holds by training our own noise-generating model to

produce synthetic depth frames from each training subset. We use this model to synthetically

double the number of depth frames for each training subset, and retrain the depth-completion

method on each augmented training set for half the original number of epochs. We demonstrate

an average 13.5% error reduction on the D415 dataset, and an average 16.2% error reduction

on the D435 dataset using synthetically doubled datasets. Our experiments show that our
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method tends to work best on training sets with between 200 and 1600 training pairs, while

providing less contribution on training sets larger or smaller than those bounds. Our method

reduces depth-completion error by less than 3% when doubling datasets with only 100 training

pairs, but yields as much as a 61.2% improvement when synthetically increasing those same

datasets to 32 times their original size. These results demonstrate that depth-completion

methods trained on small to medium-sized training sets may compete with methods trained

on much larger amounts of real data by using our augmentation method.

6.1 Limitations and Future Work

Our augmentation method is not meant to be construed as a replacement for real training data.

While our method enables small datasets to compete with larger datasets by synthetically

boosting the amount of training data, methods trained on larger real datasets will of course

perform better on average. Fig. 5.7 demonstrates similar mean-squared-error curves for

training on increased amounts of real and synthetic data, but it should be noted that the

curve for real training data tends to converge to a lower error. Our noise generator is able to

produce high-quality synthetic data that is not always photorealistic, especially when it is

trained on smaller datasets. Because of this, it might be possible to add too much synthetic

data to a training set, causing the depth-completion model to overfit to synthetic noise and

generalize poorly to real data. While we did not observe this behavior in our experiments,

this is likely because we stopped adding synthetic data when improvements began to taper

off.

While our initial results using our augmentation generator are promising, our present

method leaves room for improvement. As discussed in the opening chapters, GAN models

hold the current state-of-the-art in generative machine learning, whereas we have used a VAE

model for the sake of simplicity and stable training. In the future, a cGAN structure would

likely prove more effective and could possibly learn to generate more convincing synthetic

noisy depth images. GAN models tend to be better at modelling high-frequency details than
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VAE models and could potentially reduce artifacts caused by the down-sampling bottleneck

of the VAE network. Additionally, GAN models learn adaptive loss functions through the

discriminator that could potentially pick up on important attributes of the noise distribution

even from small datasets. This could help improve results augmenting small datasets without

the need for generating disproportionate amounts of synthetic data. Mode collapse remains

an issue but may potentially be alleviated by using a BicycleGAN or a similar model that

improves generated diversity by enforcing connections between latent encodings and generated

images [33].

It would further be useful to inspect the qualitative differences between depth-

completion methods trained on datasets containing disproportionate numbers of depth

frames compared to scenes, and vice-versa. Our experiments demonstrate that both larger

numbers of scenes and larger numbers of depth-frames per scene have a similar effect on

pixel-wise error for the validation set. However, pixel-wise error may not be the best metric

for measuring perceptual differences between images. It is possible, even likely, that a given

depth-completion method will produce different artifacts when trained on a dataset contain-

ing more scenes than images. Determining the exact differences could be achieved using a

perceptual loss function comparing layer activations on a pre-trained network between target

and generated images. A perceptual loss might also be useful for training the noise-generating

model as a means of discouraging unrealistic generated artifacts not penalized by a pixel-wise

loss. However, the transfer of perceptual loss from networks trained on RGB images to

RGB-D images remains an open question.

Finally, it would be useful to compare our method to other forms of depth-completion

augmentation. A neural network is a potentially heavy solution to what could possibly be

solved using a simpler algorithm. Given sufficient familiarity with a particular RGB-D camera

and its noise distribution, it might be possible to write an effective noise-generating algorithm

to augment that specific training set. The benefit of our method is that it is adaptable to

a wide range of different camera noise distributions, and is relatively easy to set up and
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train. Non-machine-learning solutions would need to be custom-crafted for each new type

of camera and depth-sensing technology, and would require a certain level of expertise to

arrive at a useful construction. Our augmentation method is able to train on the same data

used to train a supervised depth-completion method and replaces human experts by learning

key characteristics of the noise distribution automatically. However, it would be useful to

compare our method to other approaches to gauge the utility of each.

The contributions of this work hold promise for the rapid development of depth-

correcting algorithms for novel depth cameras and other depth-sensing technologies. Our

noise generator is able to adapt easily to new noise distributions and produce additional

training data where it is impractical or inconvenient to gather more by hand. By using our

automated depth-denoising pipeline, it is further possible to produce passable proxy ground-

truth RGB-D images without the need for extensive hand-tuning. We also demonstrate

through our experiments that it is possible to improve beyond baseline depth-completion

results without the need for collecting additional training data, even on small datasets. By

using our augmentation method and depth-denoising pipeline, it may be possible to greatly

relieve the burden of data collection for supervised depth-completion methods.
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